

AOM - AV1 How does it work?

July 2017
Pascal Massimino - Google
pascal.massimino@gmail.com

who?

skal@

AOM update - Membership

AOM: 25+ members and growing fast

Most recently joined: IBM, Hulu

Still targeting high-profile potential members

AOMedia launched in Q4 2015

AV1 royalty-free video codec in active development

Goal: 40-50% gain over VP9/HEVC

Rapid hardware adoption

Recent Developments

Successful 2-day Codec WG face-to-face in February

Attendance from 70+ engineers from member companies

AV1 currently delivering 25-35% gains across resolutions

50+ tools currently under consideration or fully adopted

Planning Towards Launch

Goal to achieve:

- Soft freeze of tools in Q3 2017
- Final bitstream freeze at EOY 2017

Dependencies on:

- Quality gains
- Completion of IP review
- Final approval of AOM Board

YouTube will begin using AV1 immediately

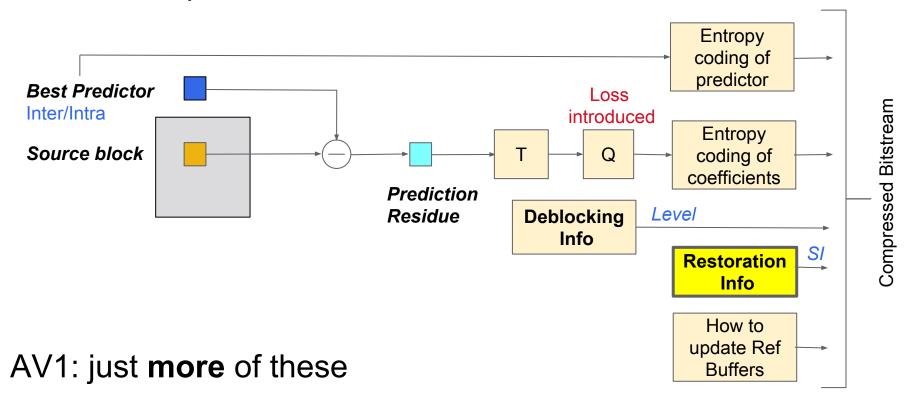
Netflix will be an "early adopter" (video)

AV1 ecosystem (testing tools + SW optimizations) gearing up

vital: test streams!

Some AV1 Coding Tools

Introduction

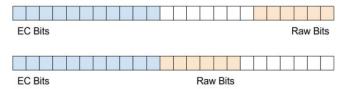

AV1 Development model

- Tools are coded as experiment, under a flag (off by default)
- Eng review (~weekly)
- IP review (including external review)
- -> decision: go/no-go.
 - Go: Flag is removed -> on by default.
 - No-go: code is removed

AV1 is <u>not</u> compatible with VP9, or any prior <u>'VP10'</u>. It is an open source project:

Code: https://aomedia.googlesource.com/ (and lssue tracker)

Video compression overview


Some experiments

AV1: just **more** of these

AV1 Entropy Coding

Multi-symbol Arithmetic Range Coder*

- Allows coding of multi symbol alphabets:
 - 15-bit probabilities
 - Alphabet size up to 16 symbols
- Raw (equiprobable) bits:
 - Encoder writes from end of buffer & merges at finalize:

One buffer per frame or tile

(<u>longer explanation</u> in video)

AV1 Entropy Coding

Symbol Adaptive Coding

- Binary syntax elements combined into non-binary symbols:
 - Reduces symbol throughput in the entropy coder
 - Allows (non-boolean) per-symbol probability update
- Reduced signaling overhead:
 - Explicit probability signaling not required, reduced header size
 - Better performance at lower data rates
 - Reduced overhead in error-resilient case

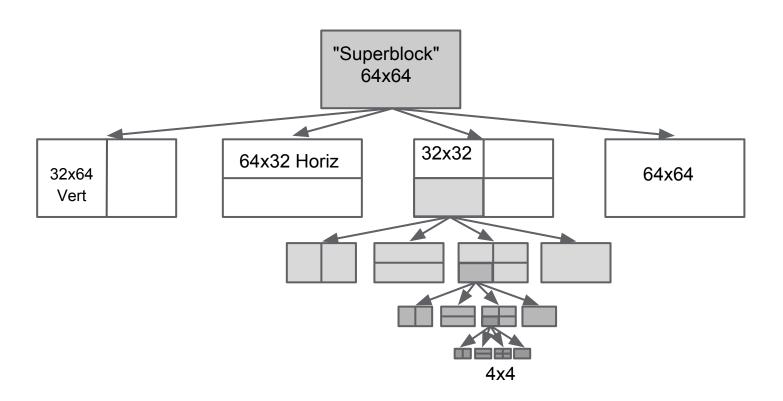
AV1 Block Structure

Dynamic partitioning

Maximum coding block size 64x64 (a "Superblock") Recursive sub-partitioning down to 4x4 (luma)

Coding parameters maintained at 4x4 level

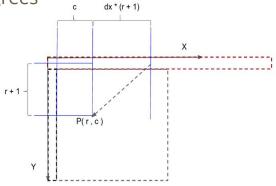
Prediction:


Down to 2x2 for Chroma YUV 4:2:0 inter Single reference frame at 4x4, for all YUV planes

Transform:

Minimum transform size 4x4 for intra- & inter-prediction

AV1 Block Structure


Prediction: Block Recursive Partitioning

Generic Directional Predictor

prediction angle = $nominal_angle + (angle_delta * angle_step)$ nominal_angle \in {45, 63, 90, 117, 135, 153, 180, 207} degrees

angle_step	angle_delta	Total number of angles
3	[-3, +3]	8 * 7 = 56

Method:

- Back-project P(r,c) to reference pixel along selected direction
- Apply 2-tap linear interpolation filter with 1/256th pixel precision
- LUT tabulates dy corresponding to each possible dx in each available angle 90 entries
 Each is a 16-bit integer, including 8-bits of precision

Paeth Predictor (replaces TM-pred)

Example for a 4x4 block:

$$L_j$$
 = Left, T_i = Top, TL = Top-left neighbors closest to $P_{i,j}$

Paeth Predictor:

One of L_i , T_i , TL closest in value to $L_i + T_i - TL$

Well-defined tie-break order: L_{i,} T_{i,} TL

.,	 ,		
TL	 	T _i	
L		$P_{i,j}$	

Smooth Predictor

- Example for a 4x4 block:
 - \circ L_j = Left, T_j = Top, R_j = Right, B_i = Bottom, TR = Top-right, BL = Bottom Left neighbors outside of block closest to P_{i,i}

- Smooth Predictor:

 - Assume R_j = TR, B_i = BL
 P_{i,j} is a weighted combination of L_i, R_j, T_i, B_i
 Weights equivalent to quadratic interpolation

 - Useful for blocks with smooth gradient

Variants: SMOOTH H PREV, SMOOTH V PRED

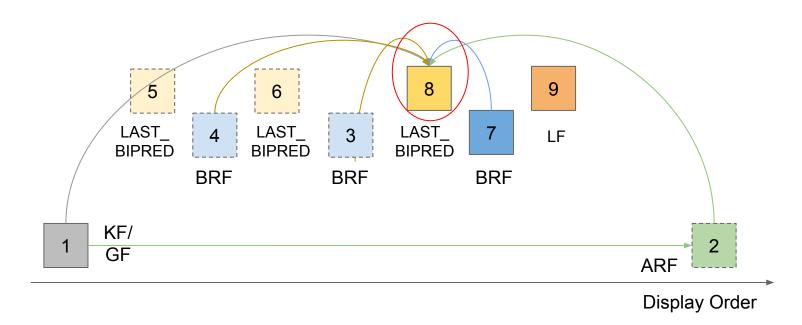
TR R. BL В.

(0.5% intra BDRate improvement)

Palette Predictor - For Screen Content

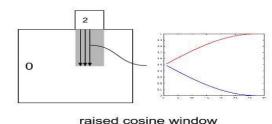
- Palette sizes of 2 to 8 'base' color entries supported
- Separate palettes for Y, U, V planes
- Palette mode available only when block size >= 8x8:
- Palette size (N) and the N 'base' entries are encoded in the bitstream
- A palette index is encoded, using a context model, for each pixel in the block
- Pixels predicted in 'wavefront' order to allow parallel computation

Dynamic Reference Motion Vector Prediction (REFMV)


- Specify the index of a MV from a list of MVs computed from neighbors
 - Examine MVs at the 8x8 block level
- Rank the MVs in the list by:
 - Distance from current block
 - Amount of overlap with current block
- Encode the index of the selected MV

		mv4		mv5	CVIII	
		mv0	mv0	mv1	mv1	mv2
mv5	mv2					
mv6						
	mv3					
mv5	mv1					

Category 1	Category 2	
mv1, mv0, mv2, mv3	mv5, mv4, mv6	


More Reference frames

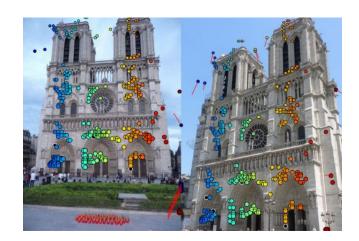
• Upto 6 reference frames per block (VP9 specified 3)

Overlapped Block Motion Compensation

- Use neighbors' predictors to refine the prediction of the current block
- Potential benefits:
 - Better prediction near to the block boundary
 - Smoother predictions / residues
- For each neighboring inter block:
 - Build a predictor, p₂(x, y), using its MV
 - Combine $p_0(x, y)$ and $p_2(x, y)$: $p_{0b}(x, y) = w_0(x, y)p_0(x, y) + w_2(x, y)p_2(x, y)$
 - Where w_0 and w_2 are defined by a 1-D raised cosine function

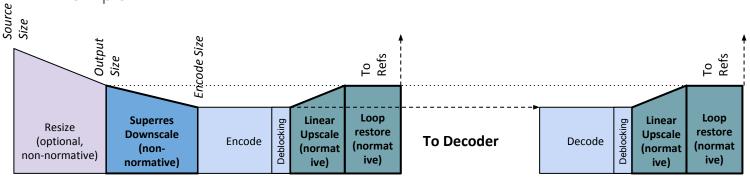
based weighting

COMPLEX!

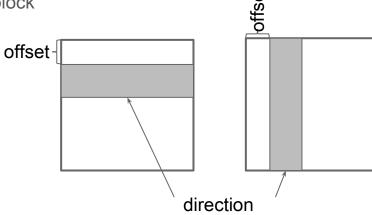

Global & Warped Motion

- Global Motion:
 - o GM parameters computed for each reference frame using feature matching + RANSAC
 - Supported motion models (& DoF):
 - Translation (2), similarity (4), affine (6), homographic (8)
- Warping:
 - Implemented as 2 shears:
 - Using 8-tap filters
- Motion parameters coded in the bitstream

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \gamma & 1 + \Delta \end{bmatrix} \begin{bmatrix} 1 + \alpha & \beta \\ 0 & 1 \end{bmatrix}$$


Combined GM + WM + OBMC

-> 2.0 - 6.0% gain (esp. Handheld camera)


Other Tools

- Guided restoration (filters and upscaling):
 - Downscale before encoding, upscale before updating reference
 - Parameters transmitted in the bitstream (learned Wiener filters)
 - Super-resolution = simple linear upscale + loop-restoration
 - o 10-30% rate reduction for super-res
 - ~3% average gain for switchable restoration 7x7 filters
 - simple

Other Tools

- Dual filter:
 - Independent selection of horizontal and vertical interpolation filters
- Masked transform:
 - Only transform a portion of a square block

AV1 Transform

Extended Transform Set

4 Transform types:

DCT, ADST, Flipped (reverse) ADST, Identity

Upto 16 transform combinations with independent horizontal & vertical selection

Reduce available combinations based on block size (for efficiency)

Identity transform useful for screen content coding

Rectangular transforms added:

4x8, 8x4, 8x16, 16x8, 16x32, 32x16

Used only on rectangular partitions of corresponding size

AV1 Quantization

Non-Linear Quantization & Delta QP Signaling

Non-linear quantization matrix:

Can also support a linear model

Delta QP values can be signaled at the Superblock level (64x64)

AV1 Hardware IP

Google's codec HW group developing a free AV1 HW decoder

Target features

Full hardware acceleration

AV1 and/or VP9 decode support

8 and 10 bits per pixel

2160p 60 fps at 600 MHz / core

3 Mgates logic estimated silicon area

AV1 Hardware IP

Licensing

Availability

Early pre-releases available from Q4 / 2017

Final release at the time of AV1 bitstream freeze

Licensing

royalty free license

Includes C and Verilog source code

Modification rights

Thanks! questions?